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CALCULATION OF STEADY AND OSCILLATING FLOWS IN 
TUBES USING A VORTICITY TRANSPORT ALGORITHM 

A. W. JOHNSON AND J. H. GERRARD 
The Manchesrer School of Engineering, Ilniversiry of Manchester, Manchester MI3 9PL. U.K 

SUMMARY 

Steady and oscillating axisymmetric tube flows are modelled using a vorticity transport algorithm. The 
axisymmetric convectivediffisive Navier-Stokes equations are solved using a splitting technique. Axisym- 
metric ring vortex filaments are introduced on the walls and subsequently convected and diffused throughout the 
flow field. An axisymmetric equation similar to the Oseen diffusion equation is used to diffuse the ring vortex 
filaments. Vorticity is reflected from the tube walls using two techniques. Results are presented for the 
developing Poiseuille flow and for the developed flow in the form of the entrance length and the axial velocity 
and vorticity profiles. Good agreement is achieved with a finite difference method in the developing region of 
Poiseuille flow. The developed flow results are compared with the analytical solutions. The developed profiles of 
velocity and vorticity have errors of less than 0.3 per cent for both methods of dealing with reflection of d i fk ion  
at the bounding surfaces and similar accuracy is obtained for the velocity profiles in oscillating flow except at the 
wall. Oscillating flow is produced with a discretized sinusoidal piston motion. Velocity profiles, boundary layer 
thickness and entrance length are presented for oscillating flow. Good agreement is achieved for low- 
Womersley-number non-dimensional frequency. At higher values of this parameter, flows are inaccurately 
simulated, because the number of piston positions used to discretize the piston motion is inversely proportional to 
the non-dimensional frequency. 
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1. NTRODUCTION 

The extension of Lagrangian vortex element methods to the computation of unsteady viscous flows 
from two to three dimensions has evolved in recent years.’.’ A description of a two-dimensional 
computational model which was applied to the flow past a circular cylinder has been published by 
Benson et and is the basis of the present work. For axisymmetric flows the non-dimensional 
convective-diffusive NavierStokes equations are solved by the introduction of ring vortex filaments 
to represent a shear layer on the solid surfaces and by the subsequent convection and difision of 
these vortex filaments. The convection routine involves a cloud- in-cell type of calculation as given 
by Christiansen4 and the diffusion routine involves the redistribution of circulation on a mesh. The 
diffusion is computed from the axisymmetric solution which is derived in the Appendix. To ensure 
the conservation of vorticity near the solid surfaces, vorticity must be ‘treated’ in these regions. Two 
approximate methods of wall treatment are compared: vorticity is either specularly reflected from the 
solid surfaces or is allowed to diffuse beyond the solid surfaces, reallocated to mesh points and 
rediffised into the flow field. Results are presented using both methods. The flows are produced by 
the motion of a piston. Wagner’ discusses the difficulties associated with specification of the inlet 
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conditions when a piston is not employed. The Poiseuille flow results are shown in the form of the 
developed velocity and vorticity profiles, whilst the oscillating flow results are in the form of the 
developed velocity profiles only. The performance of the computational scheme is tested by 
comparison with analytical solutions6*' for steady and oscillating flows started from rest in a tube of 
circular cross-section. The developing steady flow is shown to agree with a finite difference solution 
of Friedman et a/.* and experimental results quoted by Schlichting.' 

2. VORTICITY TRANSPORT ALGORITHM 

For both the developing Poiseuille and oscillating flow situations, axisymmetric cylindrical co- 
ordinates (r,  z )  are introduced, where r is the radial co-ordinate and z is the axial co-ordinate. The 
origin is at the entrance to the tube. 

The non-dimensional axisymmetric Navier-Stokes equations in vorticity- streamfunction form are 

and the azimuthal component of vorticity in axisymmetric co-ordinates satisfies the equation 

where q is the vorticity, $ is the Stokes streamfunction, u is the axial velocity, v is the radial velocity 
and Re is the characteristic flow Reynolds number based on the tube radius and the cross- sectional 
mean velocity which, when the flow is driven by a piston, is the piston velocity. In oscillating flow the 
maximum piston velocity is used. 

In axisymmetric co-ordinates the velocity components are related to the Stokes streamfunction by 

To solve these equations, an algorithm is adopted and developed which assumes that the 
convective and diffusive vorticity transport processes can be split and treated ~epa ra t e ly .~ . '~  

In the present flow situations, flow starts from rest at r = O .  To satisfy the no-slip condition, 
vorticity is introduced at the tube wall from where it diffuses into the fluid. Vorticity is represented by 
discrete ring vortex filaments. These are convected using the cloud-in-cell method of Chn~tiansen.~ 
Vorticity is diffised using a relationship equivalent to the Oseen equation for two-dimensional flow. 
After diffusion has occurred, vorticity is redistributed into new ring vortex filaments of zero age 
located at the mesh points. For convectional accuracy purposes the cloud-in-cell method is applied 
several times between each circulation redistribution step. The relative rates of calling are controlled 
by the following time steps: 

DTR = NRATI * DTT, 

where DTT is the convection time step and DTR is thc diffusion time step. 
The no-slip condition is satisfied by the introduction of a vortex sheet on the solid surfaces. This 

sheet is discretized into ring vortex filaments of a strength equal to the ncgative tangential wall 
velocity multiplied by the mesh length. Surface vorticity is only created in the convection routine 
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prior to each redistribution step, because its effect in satisfying the no-slip condition is not apparent 
until vorticity diffuses away from the solid surfaces. 

The detail of the sequence of events in the basic time step DTR was originally as follows. 

(i) Elementary ring vortices are introduced at the mesh points on the boundaries to satisfy the no- 
slip condition and are given the vortex age DTR. Previously introduced vortices at this time 
have the same age but are not on mesh points, having been convected NRA TI times during the 
previous time step. 

(ii) All vortices are diffused onto surrounding mesh intersections. At the end of the diffusion step, 
new vortices are created at the mesh points and have zero age attributed to them. 

(iii) After one convection time step DTTthe velocities at the mesh intersections are determined by 
finite difference calculation from the streamfimction values obtained as described in the next 
section. Vortices are convected distances derived from these velocities acting for a time DTT 
and their positions stored. The new vortices are inserted after the scan of the whole field. The 
convection process is repeated NRA T1 times and the end of the diffusion step reached after the 
time DTR. 

In the Appendix, vortices are diffused from grid points to ease the calculation on a hand calculator. 
In general the vortices are not on grid points but are diffused to grid points. Each contribution to the 
grid point is added to what is there already. Once diffusion takes place, the vortex strength of the 
diffusing vortex has dropped to zero and is not included in the vorticity field after diffusion. 

The original method of diffusion was superseded by the symmetrical method which was used 
throughout. This method can be employed when the mesh is uniform in the z-direction. If DZD is the 
z-direction mesh interval and n is an integer, diffusion from the mesh point r, z transfers the same 
vortex strength to the mesh points r, ,  z - n - DZD and r l ,  z + n - DZD. We therefore first place the 
vortices on the mesh points by an area-weighting scheme. The vorticity distribution remains 
essentially the same. Making use of this symmetry reduced the number of individual diffusion 
calculations by almost a half. 

3. CONVECTION ROUTINE 

The routine used to convect the vortices is similar to that used by Benson et u I . ~  This routine is 
employed to solve the convection part of equation (l), i.e. 

The velocities of the vortices are calculated using the cloud-in-cell method. The cloud-in-cell 
method involves the discretization of the circulation onto the grid points using an area-weighting 
scheme. The streamfunction distribution is subsequently obtained from the vorticity distribution by 
solving equation (2). The velocities at the vortex locations are calculated and the vortices are 
convected with these velocities. 

To solve an axisymmetric partial differential equation to obtain the streamfunction I) from the 
known source function q, the NAG fortran library routines W3EDF and D03EEF were used. These 
solve seven-diagonal systems of linear equations which arise from the discretization of an elliptic 
partial differential equation on a rectangular region using a multigrid technique. The solver imposes a 
restriction that both the axial and radial mesh point numbers are of the form 2" + 1, where n is an 
integer, and thus optimized routine convergence is achieved. The solver required the specification of 
the streamfunction on the boundaries of the computational region. The boundary conditions are as 
follows. 
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(a) At the inlet to the flow region for t 2 0, u = UO and v = 0. The streamfunction is obtained by 
integrating equation (3). The boundary condition is 

(b) It follows from axisymmetry that v = 0 on the centreline and thus + is a constant which is put 
equal to zero, 

+Cl = 0. 

(c) The streamfunction boundary condition at the wall is equal to a constant which is obtained 
from equation (3) and 

+wall = CJOSwal,/2. 

(d) The condition imposed in the current model in order to obtain the downstream boundary 
condition is v = 0. This implies the Neumann condition 

w / a z  = o 
at the downstream boundary. 

On completion of the streamfunction calculations it is necessary to obtain the axial velocity u and 
radial velocity v. Equations (3) and (4) are evaluated using central finite differences to calculate the 
internal velocity field. At the wall and centreline a higher-order expression is used to calculate the 
axial velocities. At the centreline and wall the radial velocity is equal to zero. 

4. DIFFUSION ROUTINE 

The diffusion equation to be solved is 

The solution involves the diffision of vorticity to the surrounding mesh points for a time equal to the 
diffusion time step. Following this reallocation, vortices of zero age are created at the mesh points. 
An equation for the diffision of a vortex ring is derived in the Appendix. The vorticity diffused from 
a ring vortex filament with radius r' to a point at radius r is given by 

where nos is the value of the Oseen vorticity expression at point P, II is the modified Bessel function 
of the first kind of order one and t is the age of the vortex. 

The choice of time step is determined by the requirement that it be small enough to produce a 
faithful representation of the actual continuous variation. The diffusion time step must be large 
enough to produce a spread of vorticity and is therefore larger than the convection time step. In two- 
dimensional flow the conservation of circulation in the difhion step can be checked and a small 
correction applied to ensure exact conservation. In the present axisymmetric flow, vorticity is zero on 
the axis and circulation is lost by overlapping of circulation from opposite sides of the vortex ring 
element (see Appendix). The maximum number of mesh lengths, KTOL, from the diffising ring for 
which diffision is calculated must be large enough to automatically conserve circulation in the body 
of the flow whilst allowing circulation to be lost near the axis. If KTOL is larger than necessary, 
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computing time is wasted in redistributing negligible vorticity. Generally KTOL only needed to be 
one greater than the two-dimensional value. 

In the original method of calculating diffusion (inherited from the two- dimensional model of 
Benson et d3), vorticity was diffised to the surrounding mesh points from vortices which were not 
on mesh points. Considerable computing time was saved by placing the vortices on mesh points 
by an area-weighting scheme and making use of symmetry of diffusion in the z-direction, 
q(r, z + 6z) = q(r, z - 6z). This method did not affect the accuracy and was employed throughout. 

The tube flows under investigation involve the diffusion of vorticity beyond the flow boundanes. 
At the downstream boundary there is assumed to be no vorticity variation with downstream length. 
The regions of particular interest are the solid boundaries. Benson er u I . ~  in two dimensions 
effectively use a specular reflection to account for this diffusion. Two methods have been 
investigated during the current axisymmetric work. The first is a specular reflection similar to that 
used by Benson et The second is a method by which vorticity is allowed to diffuse beyond the 
solid boundaries, reallocated to mesh points and rediffised into the flow field for a time equal to the 
age of the original vortex. We have called this method an extraneous diffusion technique. 

Specular reflection implies that the effect of the wall is assumed to reflect the diffusion back into 
the flow in the plane of the flow in Figures l(a) and l(b) in a two-dimensional fashion. It is clear from 
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Figure 17 in the Appendix that diffusion is not restricted to this plane. Some error is introduced near 
the wall as will be shown in Section 7 and Figures 3-5. The errors are reduced by the use of 
extraneous diffusion at the expense of computing time. 

In both methods the uniform mesh is extended beyond the walls. In specular reflection the vortex 
strength diffused to a grid point at n mesh lengths outside the wall is placed at the same z-position at n 
mesh lengths on the interior side of the wall. Circulation is thus automatically conserved. The method 
of extraneous diffusion is described in Figure 2. 

5 .  DEVELOPING POISEUILLE FLOW 

The vorticity transport algorithm has been adapted to model the development of a flow from the 
entrance of a rigid tube where the velocity is uniform over the cross-section to the Poiseuille flow 
velocity distribution at the end of the entrance length. The flow region is as shown in Figure I(a). 
This figure shows that an impulsively started solid surface moving with a uniform velocity Uo has 
been introduced at the tube entrance where z = 0. The solid surface remains at z = 0, i.e. the origin 
moves with the piston. A solid piston has the advantage that the tube entry is precisely specified. No- 
slip vortices are introduced on the piston surface and diffusion which would cross the piston is dealt 
with by the reflection method in use. The flow in front of the piston is developing Poiseuille flow. 

The non-dimensional parameter used in equation (1) is the characteristic flow Reynolds number 
based on the tube radius, 

Re, = Uor,,,~/v, 

where U, is the velocity at the tube entrance, Re, and Red specify Reynolds numbers based on tube 
radius and diameter respectively. 
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The mesh used to model the flow region is a simple rectangular mesh of axial and radial spacings 
DZD and DRD respectively and numbers of axial and radial mesh points NZ and NR respectively. The 
following parameters have been used as input to the Poiseuille flow model: Uo= 1.0, RNR= 1.0, 
N R = 3 3 ,  ZNz= 16.0, NZ=513,  NRAT1=3,  K T O L = 4 .  

6. OSCILLATING FLOW PRODUCED BY A RECIPROCATING PISTON IN A RIGID TUBE 

The adaption of the vorticity transport algorithm to the oscillating flow situation is somewhat more 
complicated than the steady flow application. The model described here involves the discretization of 
a sinusoidal piston motion into a series of piston steps. The following equation describes the 
sinusoidal piston motion: 

zp = Z,[1 - cos(ot)], ( 5 )  

where Zp is the piston position at time t, Zo is the piston amplitude and o is the angular frequency of 
the piston. Initially the piston is given an impulsive start from its rest position where t = 0. At each 
piston step the vorticity transport algorithm is employed to calculate the flow field. The flow field is 
calculated for a time equal to the piston time step. The piston is subsequently moved to its next step 
position and the flow field calculation is repeated. Since the fluid under consideration is assumed to 
be incompressible, when the piston is moved, the vortices produced during the flow calculation are 
moved axially by the same amount. 

The flow field under consideration is illustrated by Figure l(b). The ‘inlet’ or piston surface moves 
relative to the origin. As in the developing Poiseuille flow model, a simple rectangular mesh is used 
to define the flow region. The axial mesh is defined relative to this surface and moves with the piston. 
This involves the definition of a new axial grid at each piston step. The radial mesh used is identical 
with that used by the Poiseuille flow model. 

The non-dimensional parameter used in equation ( 1 )  to represent the oscillating flow is the 
Reynolds number based on the maximum piston velocity, 

Re, = Uprmbe/v. (6) 

In an oscillating flow the Reynolds number is not the only relevant non- dimensional parameter. The 
dominant parameter used as an input to this model is the Womersley parameter a, where 

a = r,,,a(o/v)”2. (7) 

The Womersley parameter is equal to the ratio of the tube radius to the distance from the wall over 
which vorticity diffuses in one piston oscillation. Combining equations (6) and (7) gives 

2 Re = Upa /or,uk. 

In addition to the counter NRATI (the number of convection steps per difkion step), further 
counters must be introduced to model an oscillating flow. A counter NRAT2 is used to represent the 
number of diffusion steps per piston step. NCT is the number of convection steps per piston time step 
and is defined as 

NCT = NRAT1.  NRAT2. 

The following parameters are used as input to the oscillating flow model: v = 0.01, RNR = 1.0, 
N R = 3 3 ,  Z ~ z = 8 , 0 ,  NZ=251,Zo=O.25,  NRAT1=3,  NRA12=2,  K T O L = 3 .  
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6.1. Calculation of reciprocating piston parameters 

The initial calculations made by this model are those of the piston parameters, i.e. the axial piston 
position, the piston velocity and the piston time step. Using equation (7), the angular frequency o 
may be calculated. Defining the period in terms of the number of piston steps, NZP, the number of 
convection time steps per piston time step, NCT, and the convection time step DTT enables the 
calculation of the number of piston positions as - 

I L  
NZP = + 1. 

o -  NCT- DTT 
The sinusoidal piston motion is given by equation (5). This motion may be defined in terms of 

NZP as 

Z,(Z) = zo[ 1 - c o s ( a ) ] ,  

where Z,(O is the axial piston position at piston position I. The piston axial velocities are 
subsequently determined using a central finite difference expression for 

up = a z p / a t .  

Note that the piston time step is constant whilst the piston velocity and the axial piston position 
vary sinusoidally. 

7. RESULTS AND DISCUSSION 

The Poiseuille flow developed axial velocity and vorticity profiles are respectively parabolic and 
linear. The departure from these curves is shown in Figures 3 and 4 for the specular reflection and 
extraneous diffusion cases respectively. The developed axial velocity profile does not vary 
significantly with time. The developed vorticity profile varies with time only at the wall. Figures 3 
and 4 illustrate instantaneous profiles. Both methods give results which are in good agreement with 
the exact solutions. The extraneous diffusion method gives more accurate results near the tube wall. 
This is shown by Figure 5 for the same Reynolds number, which illustrates the downstream 
developed wall vorticity variation with time. The developed wall vorticity varies with time owing to 
the convection, difision and no-slip introduction processes. The exact value of the developed wall 
vorticity is 4.0. The wall vorticity values obtained using the specular reflection method vary about a 
central value of 4.0729, whilst the more accurate extraneous diffusion method gives a central value of 
4.0008. However, the more accurate extraneous diffusion method is computationally intensive 
compared with the specular reflection case. For example, an extraneous diffusion computational run 
to a time at which the downstream centreline velocity is 99 per cent of its fully developed value, 
using a Reynolds number of 40 based on diameter, Z,,= 8.0 and N Z =  257, has a CPU run time on an 
HP7 10 workstation of 1 1,40 1 s, whilst the corresponding specular reflection case has a CPU run time 
of 3186 s. 

Figure 6 shows the axial velocity development downstream at various radial positions for a 
Reynolds number of 40 (based on diameter to enable comparison with previously published results). 
The overshoot phenomenon, i.e. the peak in axial velocity near the tube wall and near the tube 
entrance, proved theoretically to exist by Benson and Trogden,” can be clearly seen. The apparent 
peak in axial velocity on the tube wall and near the tube entrance is due to a singularity at the tube 
entrance and on the tube wall. Here the specification of the inlet axial velocity is difficult owing to the 
physical discontinuity in axial velocity at the comer; a velocity of 0.0 was used. Good agreement is 
achieved with the results of Friedmann er a1.8 for the development of centreline axial velocity at a 
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Figure 3.  Poiseuille flow developed velocity and vorticity errors obtained using specular reflection method with exact solutions. 
Full line denotes present results (Red = 40) 

Reynolds number of 40. The entrance length values obtained using this method are similar to those 
given by previous authors as seen in Table I. Atabek et al.” noted the uncertainty in determining the 
position of the tube entrance when using an experimental technique and calculated a small correction 
using a combined theoretical and experimental method. This correction amounted to 1.5 per cent of 
the entrance length. Both the specular reflection and extraneous diffusion methods give 

Table I. Poiseuille flow entrance length comparison 

Entrance length 

Re Present results Friedmann et a1.’ Schlichting9 

40 4.875 4.9 4.6 
100 11.5 11.3 11.5 
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Figure 4. Poiseuille flow developed velocity and vorticity errors obtained using extraneous diffusion method with exact 
solutions. Full line denotes present results (Red = 40) 

approximately the same result for entrance length. The Schlichting values are the result of his 
appraisal of experimental values. 

The oscillating flow results are presented at two times during a piston oscillation: at the end of a 
piston oscillation where 8 = 2 n  and the cross-sectional mean velocity equals zero and at the 
maximum reverse piston velocity where 0 = 3n/2. The developed axial velocity profiles at the above 
times are presented in Figures 7 and 8 for the specular reflection and extraneous diffhion techniques 
respectively for a range of Womersley a-values. The deviation of these results from the analytical 
solution of Womersley6 is presented in Figures 9 and 10 respectively. At a low Womersley number, 
e.g. cr=2.5, it appears that both the extraneous diffusion and specular reflection methods give 
accurate solutions. However, at a high Womersley number, e.g. CL = 25.0, both methods give 
erroneous results. There is a lower developed axial velocity error near the wall at the maximum 
reverse piston velocity than at the end of a piston oscillation. The error in axial velocity varies with 
time. The error variation is periodic in the developed oscillating flow and is illustrated by Figure 1 1  
for a Womersley number of 3.5 using the specular reflection method. The lower figure of Figure 1 1 is 
a magnification of the top figure at later times when the fully developed oscillating flow has been 
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Figure 5. Comparison of developed wall vorticity using different wall treatment methods at Red = 40. Full line denotes specular 
reflection. Broken line denotes extraneous diffusion 

achieved. The axial velocity error vanes sinusoidally with time near the tube wall and varies with a 
wave-form possessing distinctive peaks near the centreline. Note that the errors are of a small 
magnitude and the large errors at small times are due to the invalidity of the analytical solution when 
the developed oscillating flow situation has not been achieved. 

The increasing error with Womersley number is shown by Figures 9 and 10. The reason for this 
increasing error is the low number of piston positions, NZP, used at higher Womersley numbers. For 
example, using the input parameters previously defined, a Womersley number of 25.0 results in only 
nine piston positions, whilst a Womersley number of 3.5 results in 407 piston positions. The 
discretization of the sinusoidal piston motion is more accurately performed at low Womersley 
numbers. For a particular Womersley number the number of piston positions, NZP, is dependent on 
the value of mesh length, which is a minimum due to computational restrictions, KTOL, the number 
of mesh lengths over which vorticity can diffuse in a single diffusion step, and NRA 72, the number of 
diffusion steps per piston step. NRA72 is greater than or equal to one, since diffusion must occur on 
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Figure 6. Axial velocity downstream development for Poiseuille flow, Red = 40 



1252 A. W. JOHNSON AND J. H. GERRARD 

10- 

Od- 

0.0- 
.!! . a 
K 0.4- ,a'* 

-i 
02- \ 

. i  
I 

1 ' 1  
-0.3 -02 -0.1 0.0 0.1 02 0.3 

Axid Vdocky (m Refkction) 

l.0- 

0.0- 

-0.3 -09 -0.1 0.0 0.1 02 0.5 
AxM VJoeity (Extrwan Diffusion) 

Figure 7. Comparison of developed velocity profiles at various Womersley numbers obtained using extraneous diffision and 
specular reflection methods at time 8 = 211. Full line denotes a = 2.5. Broken line denotes z = 7.5. Triangular markers denote 

z = 15.0. Star markers denote a = 25.0 

each piston step. A KTOL value of four is used with the specular reflection method to illustrate the 
increase in axial velocity errors with increasing Womersley number. Numbers of piston positions of 
178, 89, 60 and 45 were achieved by varying the value of NRAR from one to four for a mid-range 
Womersley value of 7.5 and the corresponding increase in overall axial velocity error is shown by 
Figure 12. 

Figure 13 is an example of the downstream axial velocity development at a low Womersley 
number, a = 2.5, for the specular reflection method. The plot illustrates the low error in the axial wall 
velocity, which should be zero, achieved at low Womersley numbers. The singularity at the tube 
entrance and on the tube wall is clearly seen, as for the Poiseuille flow case, at the maximum reverse 
piston velocity. The effect of the singularity is not evident at the end of a piston stroke owing to the 
zero inlet velocity at this time. 

The phase difference between the developed centreline velocity obtained using the specular 
reflection method and that obtained by Womersley6 for a Womersley number of 3.5 is shown by 
Figure 14. Initially the Womersley solution lags the present solution by approximately 17". Figure 14 
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Figure 8. As Figure 7, but at 0 = 3n/2 

shows that the filly developed flow is achieved around approximately 90", which is one-quarter of 
the initial sinusoidal piston oscillation. When the developed flow is achieved, both the present and 
Womersley developed centreline velocities lag the piston velocity by approximately 13". Figure 15 
shows the developed boundary layer thickness and entrance length for a single piston oscillation. The 
comparison with results obtained using the method of Womersley illustrates the accuracy of the 
developed boundary layer thickness values. The results obtained analytically by Kassianides and 
Gerrard' for an unsteady low- Womersley-number boundary layer thickness are similar to the present 
results. The phase difference between the minima of the developed entrance length and boundary 
layer thickness is approximately 20" on the forward piston motion and approximately 15" on the 
reverse piston motion, assuming the sinusoidal form of the piston motion defined in Section 6. Figure 
15 shows that the maxima of the boundary layer thickness and entrance length are in phase. 

Finally, Figure 16 illustrates the CPU time for a single piston oscillation for a range of Womersley 
numbers employing the extraneous diffusion and specular reflection techniques. The mean ratio of 
the CPU times for the extraneous diffusion and specular reflection methods is approximately 3.5, 
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Figure 9. Developed axial velocity errors at various Womersley numbers obtained using extraneous diffusion and specular 
reflection methods at time 0 = 2n. Full line denotes z = 2.5. Broken line denotes z = 7.5. Triangular markers denote a = 15.0. 

Star markers denote ct = 25.0 

implying that a significant gain in computing time is achieved when employing the specular reflection 
method, which displays errors of an order similar to that obtained when using the extraneous 
diffusion method for oscillating flow. 

8. CONCLUSIONS 

The adaption of thc two-dimensional vorticity transport algorithm of Benson et d3  to describe steady 
and oscillating flows in an axisymmetric cylindrical tube has been completed. Errors have been 
shown to be approximately equal when using both the specular reflection and extraneous diffusion 
methods and thus, in view of the computing time, the specular reflection method gives sufficient 
accuracy for most purposes. The method used to describe a developing Poiseuille flow gives accurate 
developed velocity and vorticity profiles and an accurate estimation of entrance length. The 
oscillating flow model successfully describes low-Womersley-number flows but gives less accurate 
solutions at higher Womersley numbers. 
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Figure 10. As Figure 9, but at 0 = 3n/2 

In the application of equation (9) in the Appendix to the diffusion of vorticity, the values of the 
right-hand side of this expression were stored for all the values needed and then extracted when 
required. Since completing this work, we have realized that a much greater saving could be achieved 
by an extended use of the symmetry of diffusion and the storage of values. Diffusion from the grid 
point r l ,  ZI to the points r2, zI f n DZD transfers the same fraction of vortex strength as does 
diffusion from r l ,  z3 to rlr 23 f n D W .  The fractions separately determined for the whole range of 
radial points from which vortices diffuse can then be stored. A scan of the mesh in the z-direction 
then only requires the fraction and strength of the d i h i n g  vortex to determine the whole diffused 
field. The method can also include diffusion near boundaries and near the centreline. 
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Figure 11.  Time development of axial velocity errors at various radii for a Womersley number of 3.5. Dotted line denotes error 
along wall. Broken line denotes error along centreline 

APPENDIX: DIFFUSION OF VORTICITY FOR A VORTEX METHOD COMPUTATIONAL 
SCHEME IN AXISYMMETRIC FLOWS 

In two dimensions the vorticity is everywhere unidirectional and behaves in the same manner as a 
scalar and in the diffusion process the direction is preserved. In this case the diffusion of heat and of 
vorticity are governed by equations of the same form with the lunematic viscosity replacing the 
thermal diffusion coefficient. Diffision from a straight line source of heat or vorticity produces the 
Oseen vortex solution. We consider here difhsion from a ring vortex, which is a circular line source 
of vorticity. In axisymmetric calculations the flow equations can be solved by consideration of a 
radial plane, but when considering diffusion of vorticity, the whole of the azimuthal plane is 
important. Vortex elements are vortex rings with their centres on the axis of symmetry. The diffision 
of heat for these cases is covered by Carslaw and Jaeger.I3 The adaptation to the diffusion of vorticity 
can be made provided that one uses the property of axisymmetry, i.e. that the diffusion develops with 
axisymmetry maintained at all times. When the radius of the ring is very large, diffusion over small 
distances will be close to the two-dimensional solution. When the radius of the ring is not effectively 
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Figure 12. Effect of varying number of piston positions for a=7.5. Triangular markers denote exact solution. Chain 
line denotes NZP=45. Full line denotes N Z P = 6 0 .  Broken line denotes NZP=89. Dotted line denotes NZP= 178 

infinite, diffusion inwards concentrates the vorticity and diffusion outwards produces an attenuation. 
Since the areas of cylindrical shclls are proportional to the radius, a first approximation to the 
diffusion from a ring vortex line is the Oseen solution modified by the ratio of the radii. This 
approximation will be shown to be increasingly inaccurate as the radius diminishes. The exact 
solution is presented as a correction factor to be applied to the two-dimensional diffusion with a 
radius ratio correction included. 

We are interested only in diffusion from a vortex line and over small distances, because the 
computing scheme involves only diffusion of zero-age vortices in each (small) diffusion time step. 
We follow Carslaw and Jaeger,I3 Section 10.3, Case V. They consider instantaneous point sources of 
heat of strength Q d i  at a point 2. In the present case this becomes Tdi,  where r is the circulation of 
the vortex ring. LighthillI4 calls T d i  the strength of the vortex element. This determines the scale of 
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Figure 13. Axial velocity downstream development at various radii at a Womersley number of 2.5 using specular reflection 
method. Top figure denotes 8 = 27r. Lower figure denotes 8 = 3n/2 
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Figure 14. Phase difference between exact and computed centreline velocities at low Womersley number (a  = 3.5). Solid line 
denotes present results. Broken line denotes exact Womersley solution 
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Figure IS. Periodic boundary layer thickness and entrance length at low Womersley number (z = 3.5). Broken line denotes 
exact boundary layer thickness. Full line denotes computed boundary layer thickness. Dotted line denotes computed entrance 
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Figure 16. CPU times for a single piston oscillation starting from rest using an HP710 workstation. Triangular markers denote 
specular reflection. Circular markers denote extraneous diffusion 

the velocity field and vorticity is this strength per unit volume. Here the incorporation of the 
preservation of misymmetry necessitates alterations. Consider the cross-section shown in Figure 17. 
Without loss of generality we take the ring to be at i = 0. The vorticity vector is difised without 
change in direction. Diffusion from elements S, and S2 must be taken together so that the vector sum 
of the two diffused vorticities will produce a resultant with no radial component. In this way an extra 
factor of 2cos(8 - 0') is introduced. For convenience we take O = O  (whatever the position of the 
point of observation, P, 0 is taken as zero in this direction). The Carslaw and Jaeger integral thus 
becomes 

where R2 = 3 + f2  +i? - 2rf cosu. 
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Figure 17. Diffusion of ring vortex in axial plane 

With the modified Bessel function of order one given by 

cos 8d8 ll(x) = --j0 e*cose 
1 "  

equation (8) can be written as 

where Rmin is the minimum distance of P from the vortex ring at 8 = 8' = 0; see Figure 18. Rmin is the 
distance in the radial plane within which the misymmetric solution is obtained. Finally, 

where qos is the Oseen diffusion multiplied by the radius ratio #IT. 

Figure 18. Diffusion of ring vortex in azimuthal plane 
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Figure 19. Factor on, (,, with radius ratio, to give correct diffusion. D i f i i o n  3/32 of ring radius inwards and outwards for 
Red = 40 

The series to be summed to give Ii(x) and e-xI, (x) can be found in Reference 15 and the values 
obtained are incorporated in the computing scheme to determine the correction factors of equation 
(9). A particular case is plotted in Figure 19, which shows the value of equation (9) for a vortex of 
varying diameter in a tube of radius unity and a cross-sectional mean velocity of unity. The Reynolds 
number based on diameter is 40 with v = 0.05 and the diffusion time step t is 0.00972. Distance steps 
are 1/32 and diffusion is over three distance steps in one time step. The figure shows the significant 
difference between axisymmetric and two-dimensional diffusion. The difference decreases with 
increasing radius, but only at large r is the difference small. When diffusion takes place from a ring 
vortex on a mesh point to other mesh points, a table of all the values of equation (9) which will be 
needed can be stored initially and abstracted when required. 
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